Intercom to Snowflake

This page provides you with instructions on how to extract data from Intercom and load it into Snowflake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Intercom?

Intercom is a powerful platform for communicating with customers and leads. It provides customer messaging apps for a variety of uses, from targeted messaging to customer support. It offers tracking, filtering, and segmentation functionality on all the data it collects to allow users to analyze interactions to derive business insights.

What is Snowflake?

Snowflake is a cloud-based data warehouse implemented as a managed service. It runs on the Amazon Web Services architecture using EC2 and S3 instances. Snowflake is designed to be fast, flexible, and easy to work with. It provides native support for JSON, Avro, XML, and Parquet data, and can provide access to the same data for multiple workgroups or workloads simultaneously with no contention roadblocks or performance degradation.

Getting data out of Intercom

You get data out of Intercom using the Intercom API, which offers access to endpoints that can provide information on users, tags, segments, conversations, and more. For example, to get data about a conversation, you could call GET /conversations/[id].

Sample Intercom data

The Intercom API returns JSON data. Here's the kind of response you might see when querying for the details of a conversation:

{
  "type": "conversation",
  "id": "147",
  "created_at": 1400850973,
  "updated_at": 1400857494,
  "conversation_message": {
    "type": "conversation_message",
    "subject": "",
    "body": "

Hi Alice,

\n\n

We noticed you using our product. Do you have any questions?

\n

- Virdiana

", "author": { "type": "admin", "id": "25" }, "attachments": [ { "name": "signature", "url": "http://example.org/signature.jpg" } ] }, "user": { "type": "user", "id": "536e564f316c83104c000020" }, "assignee": { "type": "admin", "id": "25" }, "open": true, "read": true, "conversation_parts": { "type": "conversation_part.list", "conversation_parts": [ //... List of conversation parts ] }, "tags": { "type": 'tag.list', "tags": [] } } }

Preparing Intercom data

Once you've figured out what you want to pull down and how to pull it, you need to map the data that comes out of each Intercom API endpoint into a schema that can be inserted into your database.

This means that for each value in the response, you need to identify a predefined datatype (i.e. INTEGER, DATETIME, etc.) and build a table that can receive them. The Intercom API documentation can give you a good sense of what fields will be provided by each endpoint, along with their corresponding datatypes.

Complicating things is the fact that these records are not always "flat" – in other words, there may be values that are actually lists. This complicates things because it means you'll most likely to create additional tables to be able to capture the unpredictable cardinality in each record. (The "tags" value in the data above is an example of this.)

Preparing data for Snowflake

Depending on your data structures, you may need to prepare your data before loading. Check the supported data types for Snowflake and make sure that your data maps neatly to them.

Note that you won't need to define a schema in advance when loading JSON or XML data into Snowflake.

Loading data into Snowflake

Snowflake's documentation includes a Data Loading Overview that guides you through the task of loading your data. A data loading wizard in the Snowflake web UI may be useful if you're not loading a lot of data, but for many organizations, the limitations on that tool will make it unsuitable. You can load your data with two manual steps:

  • Use the PUT command to stage files.
  • Use the COPY INTO table command to load prepared data into an awaiting table.

You can copy the data from your local drive or from Amazon S3. Snowflake lets you make a virtual warehouse that can power the insertion process.

Keeping Intercom data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Intercom.

And remember, as with any code, once you write it, you have to maintain it. If Intercom modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

Other data warehouse options

Snowflake is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, or PostgreSQL, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, and To Panoply.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Intercom data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Snowflake data warehouse.